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Abstract. The problem of decentralized binary hypothesis testing by a team consisting of N

decision makers (DMs) in tandem is considered. Each DM receives an observation and'transmits a

binary message to its successor, the last DM has to decide which hypothesis is true. Nedssary and

sufficient conditions are derived for the probability of error to asymptotically (as N %j) go to

zero. The result is generalized for multiple hypotheses and multiple messages. An easily

implementable suboptimal decision scheme is also considered; necessary and sufficient conditions

for the probability of error to asymptotically go to zero are derived for this case as well. The trade

off between the complexity of the decision rules and their performance is examined and numerical

results are presented.
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1. INTRODUCTION AND MOTIVATION

Despite the considerable research interest on distributed decision making in a hypothesis

testing environment, almost all the results focus on small teams. The explosive combinatorial

complexity of the problems in this framework suggests that only simple and very restricted

architectures of large organizations can be analyzed. The infinite parallel organization was

considered in [T88]. In this paper the infinite tandem architecture, the other limit case, is analyzed.

There exist two main reasons which motivated our research. First, it is desirable to determine

under what conditions the probability of error of the infinite tandem team (organization) goes to

zero. Then, it is also interesting to examine the behavior of the members of a team when a change

in the architecture of the team occurs. It is known that if a new DM is added to a team, all the DMs

have to modify their decision rules to adapt to the new architecture; this requires that the problem

be solved again from the beginning for the new architecture. For this reason, we introduce a

suboptimal decision scheme which is considerably more simple to implement, under which, each

DM tries selfishly to maximize the performance of its own personal decision instead of the global

team performance. One can make an argument that this decision scheme is more descriptive of

human organizations than the optimal decision scheme, since human DMs are reluctant to sacrifice

their individual performance for the good of the organization.

The suboptimal decision scheme can be easily adapted to account for changes in the team

architecture; it will not yield optimal performance, but will provide a descriptive flavor of the team

dynamics. Moreover, it provides an upper bound on the optimal team probability of error, which is

also bounded from below by the probability of error of the centralized team. For all the above

reasons, the proposed suboptimal decision scheme is extensively analyzed; conditions for the , %,, -

probability of error of the infinite team to go to zero, when this scheme is implemented, are derived ,

and its performance is compared to the optimal team performance.

The sequential (tandem) decentralized problem is defined as follows. As shown in Figure 1,

the team consists of N DMs and there are M hypotheses H0, ..., HM-1 with known prior

probabilities P(Hi) > 0. Let y, the observation of the nth DM, n = 1, ..., N, be a random variable

taking values from a set Y. The y,,'s are conditionally independent and identically distributed given

any hypothesis, with a known probability distribution P(y I H), i = 1, ..., M. Let D be a positive

integer. The first DM evaluates a D-valued message ul based on its own observation and transmits 0

it to its successor, that is, ul = 7j(yj), where A: Y-+{ 1, ..., D) is a mearurable function. Each

subsequent DM evaluates a D-valued message u,, based on its own observation y,, and on the
message u,j-. from its predecessor and transmits it to its successor; that is, u, = ya(.,,, u,_.) where

the measurable function y,: Yx( 1, ..., D)-+{1, ..., D) is called the decision rule of DM n. The

decision UN of the final DM N is the team decision and declares one of the hypotheses to be true. ty, Codes

In.,
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The objective is to choose the decision rules , .... which minimize the probability of error of

the decision of DM N.

Y1 Y2 YV-tI YX

:M1DM2 ----- 4DM N-1 Adas

Figure 1. The Team Consisting of N DMs in Tandem

Many results have focused on similar problems with small teams and small number of
messages [ET82], [TV87], [R87], [TP89]. As mentioned above, in [T88] asymptotic results were
obtained for the parallel team, where all DMs transmit a message to a fusion center which makes
the final team decision. We can easily obtain that, given the conditional independence assumption
for the observations, the optimal decision rule of each DM (except the first one) is given in the
form of likelihood ratios with DM(M - 1)/2 constant thresholds. These thresholds can be obtained
by examining all the solutions of a set of coupled algebraic equations which are usually very hard
to solve. Comparison with our results indicates that the parallel architecture asymptotically
performs better than the tandem architecture, contradicting the claims in [VT88] where each sensor
employed the Neyman-Pearson test. Note also that if the conditional independence assumption
fails, the optimal decision rules do not have to be given by likelihood ratio tests and the problems
are computationally intractable (NP-hard) even for small values of N and D [TA85].

For the parallel team it is known that the probability of error goes very quickly to zero, for any
logical choise of decision rules. We would like to determine whether the probability of error for the
tandem team goes asymptotically to zero. In the next section we obtain necessary and sufficient
conditions for this for the case of binary hypotheses (M = 2) and binary messages (D = 2) and in
the following section we generalize the result. In section 4 we introduce the suboptimal "selfish"
decision scheme which is very easily computable and derive necessary and sufficient conditions for
the probability of error to asymptotically go to zero. Finally, in section 5 we compare the
performances of the optimal and suboptimal decision schemes and try to establish the trade off
between the performance and the computational complexity of the decision rules,

Notation. LxJ denotes the integer part of x and rxl denotes the smallest integer greater than or
equal to x.
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2. THE OPTIMAL INFINITE TANDEM TEAM

We consider the case of binary hypothesis testing (M = 2) and binary communication

messages4 (D = 2). In this case each DM or team of DMs can be expressed by its Receiver

Operating Characteristic (ROC) curve; this curve usually given in the form of two parametric

equations is a representation of the probability of detection PD (= P(u = 1 I H1) ) of the DM or team

of DMs as a function of the probability of false alarm PF (= P(u = 1 I HO) ) and has many

interesting properties [V68]. The probability of error of a tandem team consisting of N DMs is

defined as follows:

Pe(N) = P(HO) PF + P(HI) (1-PD) (1)

Consider the team which consists of N DMs in tandem and performs binary hypothesis

testing. Given some prior probabilities (hence also some 77 = P(Ho)/P(Hj) ), we generalize the

results of [E82], as in [R87], and obtain the necessary conditions for the optimal decision rules of

the DMs as a set of likelihood ratio tests with constant thresholds:

Ul= I P(uN = 1 ul 1, Ho) - P(uN= I ul= 0, H0)A(yj P(uN=I ul= 1, HI)-P(uv= 1 l=0, Hj) 17r. 7 71 (2)

ujff 0

u= I P(uNf I u,= 1, HO) - P(uN= 1 I u,,= 0, Ho) P(u,.-1 = i 1Ho)
A~y.) P(uNf- I unf 1, HI) - P(u/V=- I unffi0, HI) P(u,,.-,= i HI) n1fi r

Un= 0
for n=2,3, ... , N-1 and i=0,1 (3)

and:
UN l P(uN_..1= i Ho)

A(YN) ! P(uN-l= i HI) 7 9 17k for i = O, 1 (4)

UN=0

4 The two messages which each DM is able to transmit can be denoted mi and m2. Without loss of generality
assume that:

P(u.- mu I HO) > P(un m21 Ho)
P(unfr- ml I HI) P(un- nq I2 HI)

Suppose that DM n receives an observation y,; if DM n's optimal decision is un= mi when he re .ives un-li mi,
then it can be shown that his optimal decision is again unS mi when he receives un-l = mi (for n a 2, 3..., N).
Moreover, if DM N's optimal decision is upNrm 1 (0) when he receives uN-I = ml (m2), then it can be shown that his
optimal decision is again uNa 1 (0) when he receives uN-l- m2 (ml). Then backtracking it can be seen that ml is
interpreted as 0 and m2 is intrpreted as 1.
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We will now demonstrate that the optimal probability of error of the infinite tandem team does

not necessarily have to be zero. For this, we will present a special ROC curve for the individual

DM and we will calculate inductively the ROC curve of the team consisting of N such DMs in

tandem; this in general can not be done analytically. We will then take the limit of the team ROC

curve as N- o and show that the team probability of error is bounded away from zero.
Therefore. consider the DM whose ROC curve is presented in Figure 2, for some a > 1 (the

underlying probability distributions are presented in Table 1). An example of a DM with such a
ROC curve is a person, who observes the outcomes of the tosses of a coin known to be a to 1

biased in favor of the most likely outcome, and tries to decide whether the coin is biased in favor of

'heads' or in favor of 'tails'. We start by obtaining the ROC curve of a team which consists of N

such DMs.

1

PD

0 1

PF

Figure 2. A Special ROC Curve

LEMMA 1. Consider the tandem team which consists of N;> 2 identical DMs; suppose that the

ROC curve of each DM is given in Figure 2. Then the team ROC curve consists of the following

2N points:

TPOPDo = (0,0) (5a)

(p;j.-Ip~~j-l) + 2r 2 j-1 1)a)+ ~ 2  -2 j -
f Da+II1)2. (a+ I ( +b)

for = , 2,... 121 (5b
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H0  0

H1 L

HO IL cL+ I

OL+LHi + I oM+ I

Table 1. Probability Distributions for DM of Figure 2

Da+I. (a+1)2

(12 a

for j- ,2,......1-1 (.c)

S+p- +j) -( I -j) for j1,2,. N (5d)

The proof is by induction on N. We consider the cases of N odd and N even separately and then

combine the results to obtain (5). The detailed proof is presented in the appendix. Note that since
the ROC curve of the individual DM is symmetric, the team ROC curve is also symmetric.

We use Lemma 1 to obtain the ROC curve of the infinite team which consists of identical DMs

whose ROC curve is given in Figure 2.

LEMMA 2. The limit of (F - p- ) as N goes to infinity is:

im (PIVIP I 1) = I a (6)
IV-.. a+~ a2+a+1
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LEMMA 3. The ROC curve of an infinite tandem team of identical DMs whose individual ROC

curve is given in Figure 2 consists of the following points:

SII (a+l 2a 2  (7a)

a+ 2+a aa+ 1

V1 2.. a 2  ,1_a+__1 2 1 )(7b)a +a+1 a 2 +a+

for i = 0, 1, 2,

To prove Lemmas 2 and 3, we consider the cases of N odd and even, take the limits and show

that they are equal. The detailed proofs are presented in the appendix. From above the Lemmas, we

derive the following two interesting corollaries.

COROLLARY 1. Consider the infinite tandem team of identical DMs whose ROC curve is

given in Figure 2. Suppose that the prior probabilities of both hypotheses are equal. Then the

optimal probability of error for the team is:

P'(-,) = 0 (8)
a2 + a+ 1

Proof. From basic detection theory [V68] it is known that the optimal operating point is the

point(s) of the ROC curve at which the slope of the tangent to the ROC curve is 17 = P(Ho)/P(HI) =

1. If the ROC curve is not differentiable (and thus a tangent to it does not exist everywhere) the

optimal operating point is the point(s) of the curve which first intersects a line of slope 17 moving

down the PD axis. From Lemma 3 we can see that any point in the line segment between

(PF'-,PN- 1) and (PFN, PD8)is such a point. Then, substitute for the limit of (PFh-1 , PN- 1)

from (3) into (1), the definition of the probability of error, and the corollary is proved. Q.E.D.

REMARK: If 77 = 1, the above infinite tandem team improves on the performance of an individual

DM by a factor of:

p, -o (0.5a + 1)(a+ 1)

P'(1) a 2 + a + 1

Thus the probability of error of the infinite tandem team will be between 50% and 100% of the

probability of error of an individual DM. Furthermore as Ilog(7)l increases the improvement on the

performance is even less significant. These facts should suggest the inefficiencies of the tandem
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architecture. As the number of DMs in an organization increases the team should expand more in a

parallel than in tandem since the contribution of DMs which are positioned at the low levels in the

chain of command seems to be insignificant.

CORROLARY 2. The probability of error of an infinite tandem team does not have to be zero.

Since the probability of error of an infinite tandem team could be bounded away from zero, we

present necessary and sufficient conditions on the ROC curve of the individual DM for this to

happen.

PROPOSITION 1. Consider a tandem team which consists of N identical DMs and performs

binary hypothesis testing. Then, as N-+ -, the team will achieve zero probability of error w.p. 1,

for any prior probabilities, if and only if either the initial slope of the ROC curve of the individual

DM is infinite or its final slope is zero.

Proof. To prove the only if part, suppose that the initial slope of the ROC curve of the individual
DM is m0 < - and that the its final slope is m, > 0. Denote: a = maxt(mo, 1/ml). Then because

of the concavity of the ROC curve, each DM of the team is worse than a DM having a two piece-

wise ROC curve whose first piece has slope a and whose second piece has slope I/a (Figure 2).

By the Lemma 3, an infinite tandem team consisting of such (better) DMs will have a non-zero

probability of error. Therefore the infinite tandem team consisting of the original (worse) DMs will

also have non-zero probability of error.
To prove the if part, suppose without loss of generality (since the names of the two

hypotheses can be interchanged) that m = *. The proof consists of proposing decision rules (not

necessarily optimal) for the DMs of the team which will result in a zero asymptotic probability of
error, that is, it will be shown that given any 8 such that I > 8 > 0, if the proposed decision rules

are employed, the probability of error can be made less than 8 as N-+ -c. The detailed proof is

presented in the appendix. Q.E.D.

This is a useful result because it offers a convenient test involving only the individual team

member, in order to determine whether the infinite team probability of error is bounded away from

zero or not. Moreover, after the proof was completed, it was communicated to us by J.N.

Tsitsiklis that similar results had been established in the context of automata with finite memory

[C69], [HC70]. There, a finite Markov chain was considered, with the additional restriction that

the transition probabilities be time invariant; each state of this chain corresponded to a discrete

hypothesis and conditions for the convergence of the chain to a unique (true) state were obtained.
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3. INTERPRETATIONS AND GENERALIZATIONS

Let A(.) denote the likelihood ratio of y e Y the observation of each individual DM and A(Y)

denote the range of its possible values. Then, Proposition I can also be stated in the following

equivalent form:

PROPOSITION la. The infinite tandem team probability of error is bounded way from zero,
for any prior probability, if and only if there exists some B > 0 such that:

4og[A(Y)]I < B.

We would like to elaborate on these necessary and sufficient conditions. For this consider a
single DM who receives measurements serially and who has limited memory so that it can only
recall the last one received. Then the conditions imply that if this DM is willing to wait long enough
before making its decision, it can achieve any desirable level of performance. On the other hand, if
the conditions do not hold the likelihood ratio of an individual DM is bounded. This implies that
there exists some DM (N*+1) of the team whose measurement does not influence its decision,
because the decision uN is so reliable that it is propagated as uN*+l regardless of yN*,+; since all
the DMs are identical, uN. will be more reliable than the measurement of each subsequent DM and,
will eventually become the final team decision as well. Thus only the measurements of the first N*
DMs influence the team decision and since a finite number of measurements results in a non-zero
probability of error even in the centralized case, the optimal team probability of error will be
bounded away from zero.

It is worthwhile to compare the conditions of Proposition 1 to the conditions in [T88] for the
DMs of the infinite parallel team to have identical optimal decision rules. The conditions are
"opposite" in the sense that the conditions in [T88] require that a single DM is not able to make a
perfectly accurate decision, while our conditions require that a single DM is able to make a decision
satisfying any given level of accuracy.

Consider the infinite tandem team; suppose that it performs M-ary hypothesis testing and that
.a e communication messages between DMs are also M-ary. Then define the following likelihood
ratios:

A 1{y) a (yIHj) fori,j=O, 1 ... , M-1 and i >j.P(.yIHj)
Let Ai,<Y) denote the range of the possible values of Ai(). The generalization of Proposition 1 for

the case of M-ary hypotheses is:
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PROPOSITION 2. Consider the infinite tandem team which performs M-ary hypothesis testing

and employs M-ary messages. The team probability of error is bounded away from zero, for any
prior probabilities, if and only if there exists some Bij > 0 such that:

lojAjj/y) ] I<B

for some i,j=0, 1 ... , M-1 and i>j.

It is easy to find an example for which the probability of error is bounded away from zero if
the conditions are violated and the binary proof can be adapted and simulated M(M - 1)/2 times to
show that the conditions are also sufficient.

In [HC70] an ingenious scheme was presented (and generalized in [K75]) demonstrating that
if the Markov chain is constructed with one more node than the number of the discrete hypotheses,
then there exist sets of transition probabilities that will enable the chain to converge to a unique
(true) state. This idea could be appropriately adapted to our hypothesis testing framework so that
decision rules for the DMs be derived for the infinite tandem team to always achieve zero
probability of error if the number of the communication messages between DMs is one higher than

the number of the hypotheses.

Our results are true if the probability of error is generalized by a cost function whch assigns
different costs for hypothesis misclassification. They can also be extended to teams which have
more general acyclic (tree) architectures, as long as the team does not include a DM who receives

an infinite number of messages from other DMs and to teams whose DMs are not identical. The
proofs are variants of the proof of Proposition 1.

4. THE SUBOPTIMAL INFINITE TANDEM TEAM

The non-linear coupled equations of (2)-(4) are very hard to solve; their solution does not have to

be unique and their computational complexity increases exponentially with N. Moreover, as was
discussed in the previous section and will be verified with the computer simulations of section 5,
when the conditions of Proposition 1 hold, the convergence of the optimal team probability of error

to zero is slow.

REMARK. This is not true for the cases where the conditions of Proposition 1 do not hold. In
those cases the convergence to the optimal probability of error occurs geometrically fast at a rate of
o/(+ It-)2. If n = 1, the difference in probability of error between a team of N = 2k + I DMs and

the (assymptotically optimal) infinite team is:
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(a 2 + a + l )(a + l ) f(as0,)22for k=0,1,2,....

For the above reasons it is worthwhile to suggest the following suboptimal decision scheme
which has two important properties: its computational requirements increase linearly with N and,
under slightly more restrictive conditions than those of Proposition 1, the probability of error goes
to zero as N-+ -.

Under the suboptimal decision scheme each DM tries to minimize the probability of error of its
personal decision; that is it acts as if it was the last DM in the team. Therefore, this is a selfish
decision rule since each DM effectively ignores all of its successors in the team and instead of
optimizing the global team decision, each DM tries to "optimize" the performance (i.e., minimize
the probability of error) of its own decision. Note that this suboptimal decision scheme can be
implemented easily and efficiently even if the DMs of the team are not identical. Formally, the
suboptimal decision rules for any DMs are defined as the following likelihood ratio tests with
constant thresholds 5:

Ul= 1
A(yt) 17 =/- 41 (9)

ul= 0
u.= lP(u,,_ I= i IHo)A(y.) P(u _ 1= i HI) t- /=I' (10)

u,= 0

for n=2,...,N and i=O, I

From now on we refer to the decision rules just introduced as the "suboptimal decision rules"
and to the team which employs them the "suboptimal team."

There exists one more attractive attribute of this decision scheme which is in fact the primary
reason we analyzed it. One of the more intriguing questions of organizational design deals with the
response of the team to a change in the team architecture. How does the team react to the addition
or deletion of a DM? If a change occurs in the team when the optimal decision scheme is
implemented, the team can not make use of its current status to facilitate the computation of the new
optimal decision rules; the problem needs to be solved again from the beginning. This is not true
under the suboptimal decision rule, where it is relatively easy for the team to adapt to such a
change. The reason for this is that under the suboptimal decision rule, the DMs behave less than

5 Comparing the optimal decision rules of (6)-(8) to the suboptimal decision rules of (9) and (10), notice that the
suboptimal ones are decoupled.
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team members and more like individuals; still the analysis will provide some insight and bounds on
the optimal team performance. The main result of this section follows.

PROPOSITION 3. Consider a tandem team which consists of N identical DMs and performs
binary hypothesis testing; suppose that the team employs the suboptimal decision scheme. Then,
as N --+ 0, the team will achieve zero probability of error wp. 1,for any prior probabilities, if and

only if both the initial slope of the ROC curve of the individual DM is itenite and its final slope is
zero.

REMARK. The necessary and sufficient conditions of Proposition 3 are stricter than the ones of
Proposition 1, since they require that both the initial slope of the ROC curve be infinite and the
final slope be zero, instead of either the initial slope be infinite or the final slope be zero.

PD

PF 1

Figure 3. A ROC Curve with Infinite Initial Slope

Proof. To prove the only if part recall from Proposition 1 that if the ROC curve of the individual
DM has both finite initial slope and non-zero final slope, the asymptotic team probability of error is
bounded away from zero even if the optimal decision rules are employed; therefore in that case, it
is bounded away from zero when the suboptimal decision rules are employed.

Consider the case where either the initial slope is infinite or the final slope is zero, but not
both. We need to show that the asymptotic team probability of error under the suboptimal decision
rules is bounded away from zero, even though it goes to zero under the optimal decision rules (as
was established in Proposition 1). For this suppose without loss of generality that the ROC curve
of the individual DM has infinite initial slope and non-zero final slope; then consider the DM whose
ROC curve is presented in Figure 3 along with the underlying probability distributions in Table 2.
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It should be obvious that if the prior probabilities are such that 77 < 1 - e the optimal decision for

every DM is u = 1 6; this leads to:

77 +
pa) = 7"/1 ; for n=1,2,3,....

Thus also:

p(,,) 77 > 0
77+

The proof of the only if part is now complete.

H 
1

HO 1 -c

Table 2. Probability Distributions for the DM of Figure 3

The proof of the if part consists of proposing decision rules for the DMs of the team which
will result in a zero asymptotic probability of error; that is, it will be shown that given any 8 such

that I> 5 > 0, if the proposed decision rules are employed, the probability of error can be made
less than 8 as N-+ -. It will also be shown that the proposed decision rules are indeed the

suboptimal decision rules. The detailed proof is presented in the appendix. Q.E.D.

61t is also easy to see tha if q 1 l+e then the suboptimal decision rules coincide with the optimal decision rules and
are:

ul(yl) = 0 j=
,l Yl 1

URn(MI .n - I) = ; yn= 0 and un-. = O
I; otherwise

for n= 2,3, 4....
These of course lead to Pe(-) = 0 (Proposition 1).



14

Let A(.) denote the likelihood ratio of y the observation of each individual DM and let A(Y)

denote the range of its possible values. Then, Proposition 3 can also be stated in the following

equivalent form:

PROPOSITION 3a. Consider the infinite tandem team which employs the suboptimal decision

rules and performs binary hypothesis testing. The team probability of error is bounded away from

zero, for any prior probabilities, f and only if there exists some B > 0 such that either:

log[A(Y)] < B

6r..

11B < log[A(Y)I.

Similarly, for the M-ary hypothesis testing case, Proposition 2 can be modified as follows:

PROPOSITION 4. Consider the infinite tandem team which employs the suboptimal decision

rules and performs M-ary hypothesis testing. The team probability of error is bounded away from

zero, for any prior probabilities, if and only if there exists some B4 > 0 such that either:
Iog[Aij(Y)] < Bij

cr.

1fB 3 <log[AifY)1

for some i,j=0, 1, ..., M-1 and i>j.

It is easy to find an example for which the probability of error is bounded away from zero if

the condition is violated and the binary proof may be adapted to show that the conditions are also

sufficient. Since under the suboptimal decision scheme each DM tries to minimize his personal

probability of error, it does not make sense to assign to each DM a number of messages different

from the number of the alternative hypotheses. Our results are true if the probability of error is

generalized by a cost function whch assigns different costs for hypothesis misclassification. They

may be extended to teams with more general acyclic (tree) architectures, as long as the team does

not include a DM who receives messages from an infinite number of other DMs. Finally, as was

mentioned above, they can also be applied to teams whose DMs are not identical. The proofs are

variants of the proof of Proposition 3.
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5. NUMERICAL RESULTS

In this section we perform numerical studies of the optimal and the suboptimal decision rules.
The probability distributions of the observations are Gaussian with variance c2 = 100; under H0

the mean isp o = 0 and under Hi the mean is #i = 10. Note that in this case the initial slope of the

ROC curve of the individual DM is mo = - and that the final slope is m, = 0; thus the team
probability of error should go to zero asymptotically under both the optimal and the suboptimal

decision scheme, according to the theoretical results presented above.

0. 16 P"(1 0)

/ o.1- SUB

0.02

* * .' 0.00 ,
-2.0 -1 .5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 4. P'(10): Probability of Error for a Ten DM Team (N 1 10) vs. 77 in a log. scale

In Figure 4, we present the probability of error for the centralized case, the optimal case and
the suboptimal case for a team consisting of N = 10 DMs as a function of the threshold 77 (namely

the prior probabilities). The number N = 10 was selected because it was shown in [P88] that it is
sufficient for a team to achieve performance very close to the asymptotic one, i.e., as N -+ -, for a
special class of problems. Also, note that for 7 = I (i.e., equal priors) the optimal and the

suboptimal decision rules achieve identical performance; in fact the suboptimal decision rules

become optimal in this case. It is interesting to note that the as the prior probabilities become very
unequal (the minimum prior probability is less than 0.333), the performance of both decision

schemes again becomes roughly equal (though never exactly equal).
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Figure 6. Percentage Deterioration in Performance

In Figure 5, we compare the performance of the centralized case, the optimal case and the
suboptimal case for 7 = 3 as a function of N, the number of DMs in the team. The probability of
error of the centralized case decreases exponentially to zero. On the other hand, under both the
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other two decision schemes it decreases slowly to zero. Finally, observe that the percentage
deterioration in the team performance when the team changes from the optimal to the suboptimal
decision rules reaches a steady-state level as the number of DMs increases. In Figure 6 the
percentage deterioration in the team performance is presented for the cases of Y1 = 1 (where there is
no deterioration because the decision rules coincide, as was mentioned above), 17 = 3 and 17= 9; as
77 increases the deterioration in performance between the two decision schemes also increases.

We would like to repeat that the implementation of the suboptimal decision rules is much
easier than the one of the optimal decision rules. Each DM of the team needs to know only very
little about the rest of the team in order to implement the suboptimal decision rules; for example, it
does not need to know anything about its successors. The suboptimal decision rules are much less
rigid and can be easily adapted to accommodate for changes in the team; also, for the optimal
decison rules the computational requirements grow exponentially with time, while for the
suboptimal decision rule they just grow linearly with N. Thus, depending on the particular
application of the team and on the available resources, the team designer has to evaluate the trade
offs and decide which decision rules should be implemented.
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APPENDIX

Proof of Lemma 1. By induction on N. It is trivial to confirm that it is true for the case of N =

2. To prove the general case first observe that since the problem is symmetric with respect to the
two hypotheses, the team ROC curve will be symmetric with respect to the line PD = -PF + 1.
Thus, only (5a), (5b) and (5c) need to be proved. For this consider whether N is odd or even; then

(5) can be written accordingly:

CASE A. N=2k fork= 1,2,3,...

(Po, PD) - (0,0) (G la)
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Lj 1Zji)" (a+l)2)' la+l q (a+l)

forj= 1,2 .... k (lb)

(Fp, a~J + I(~T2k2~ a+ ----- rl( ,j L,+ L- 1 = 1

(a~~~la 1 _1 "

forj= 1, 2,... k-1 (lIc)

I + k-1I+j _ 2,0-j p2k-j)
(TF P ( 1 -pD' 1 -PF) forj= 1,2 .... 2k (lid)

CASEB. N=2k+l fork=l,2,3,...

(P, Po) = (0,0) (12a)

1p 2j p 1 ) .- + 3 - 4 + 3 j 1':(a 17 i+ ima

for j =1, 2... k (12b)

(p
2
Jp)) = ( 1 ._.._j 1-- -- _L.._"

(P ?'J'P]J.((a "1)2 " +

F'D L~+ 1 .l (a+ 1)2

forj = 1, 2 ... k (12c)

2k + k24.jl klj
(pF p j) = ( 1 p - F - ) forj= 1,2,... 2k + I (12d)

Suppose that a team of N identical DMs has a ROC curve defined by (11) ((12)). Then it is a
matter of tedious but straightforward algebra to show that adding a new DM to the team will yield a
new team whose ROC curve will be given by (12) ((11) respectively).
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Consider only the case where N = 2k since the proof for the case where N = 2k + 1 is
analogous; the ROC curve of the team consists of the (P, PD) points defined by (11) for q = 0, 1,

.... 2N - 1. The new DM N+ 1 has two decision rules to choose from:

UN1= 1 w ul=l1 and yN l(i). 141N+UIl~dY~
1 0 ,otherwise

=+ uN-O and YNO

(ii). I =  ; otherwise

Then, if decision rule (i). is employed:

(P, PB) = (__lP PD (13)\a+1 'a+1 "

and if decision rule (ii). is employed:

(Pn, PB) -- P + . 1 ,1 - p + a-1 (14)a+ +1 a+l I a+1

When decision rule (i). is employed the point (0,0) yields again (0,0), the points of (1 ib)

yield the points of (12b), the points of (1 lc) yield the first (k-1) points of (12c) and the first point

of (1 1c) (i.e., the point corresponding to j = 1) yields the last point of (12c) (i.e., the point

corresponding to j = k). Similarly, the points of (12d) are obtained by symmetry. Thus all the

points of (12) can be obtained by the team ofN+1 DMs.
It is not hard to verify analytically that all the other points that can be obtained from the points

of (11) and the two decision rules will never lie above the ROC curve defined by (12). Q.E.D.

Proof of Lemma 2. Again distinguish between N odd and even.

CASE A. N = 2k fork= 1,2,3,...
Note two facts; first that (P'- D - 1) is given by (5b) for j = k and second that instead of

taking the limit as N goes to infinity, we can equivalently take the limit as k = N12 goes to infinity.

Thus:
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2k-I a
(TF - D -( + =) (5

i=Ol i a 12

and taking the limit as k goes to infinity:

lifk- 1, P k l) (a+ 1)2 a f +a+ W

La+l a2 +a+l (1a+ra2+a+lJ

CASE B. N= 2k+ l fork=,2,3,...

This time (PF- PD 1) is given by (5c) forj = k:

(p2, P2) 1 _._-_ a 1 _... (a--- (17)TF , PDa + I ( a_'1_a = 1)21' a+11.0= (a+ 1)21(17)

Taking the limit as k goes to infinity:

2A, 2 [1 a (a+ 1)2 , 1._1 (a+ 1)2
k- 4-0 a+l1 a2+a+l a l2+a+ll

+a+l , a +a+l (18)

From (16) and (18), we conclude that the Lemma be true. Q.E.D.

Proof of Lemma 3. Since the points of (7b) are symmetric to the points of (7a), it suffices to

prove (7a). Denote: m f 2 - -1 +j . Then the points of (7b) can be written as:

J m 21 "(a--l- -n I ((a + 1)2 I  (al +J- 12

in0 inO

M = 19 -,-f(19)

Similarly, denote: m = - +j . Then the points of (5c) can be written as:2s
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[~Tr4~1~2m- 1E ( ( -i

a l a l 1)2111

m -1 -2, rN 1+ 1 (20)

When the limit is taken as N-+ a the summations of the above equations are constant for all
finite m; in fact they were calculated in the proof of Lemma 2. Then by examining separately the
cases of N odd and N even, it can be shown that (19) and (20) can be written in the form of (7a).

Q.E.D.

Proof of Proposition 1.
STEP 1: Choose some large number jT# . Then consider the point (PFp17*), PD(71*)) of the ROC
curve of the individual DM which has slope 17 and denote by eo(v7*) > 0 the probability of
detection at that point (Figure 7). Then from the concavity of the ROC curve:

7"* Pl:(7l*) < &D(77*) =*} PF<(U*) < EO7* (21)
17*

Note that such a point can always be obtained regardless of how large 17* is because of the

assumption that the initial slope of the ROC curve is: mo = -.

STEP 2: For some integer N*, define the following decision rules for the DMs of the team:

For DM 1:
0o ; A(yl) q* 12a

u1 = 7A(x) = (22a)

For DM n; n = 2, 3, ... N*:

Un = Yn(YnIn -1) (0 ; A(yO <7* and un...= (22b)
1 , otherwise

For DM n; n = N*+l, N*+2, N*+3,

Un= 7N(YN, Un- 1) = Un- I (22c)
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slope: rI*

PD

co(Q*)

0 Pr(r*) 1

Figure 7. A ROC Curve with Infinite Initial Slope (mo =

Let us elaborate on the decision rules of (22). According to these only the first N* DMs

influence the decision of the team. A decision ui = 0 is propagated through the first N* DMs of the

team until some DM n* receives an observation which makes it decide une = 1. In that case the

team decision will be uN = 1; otherwise the team decision will be uN = 0. Note that since 17* was

chosen to be large, there is a very small probability for a DM n* who receives U,=. I = 0 to decide

u,. = 1 under both hypotheses, but if it does its observation yn. suggests that there is an

overwhelming probability that H, be the correct hypothesis.

STEP 3: If the decision rules of the previous step are implemented the probability of detection of

the team is:

PD = 1- (1eo(17*)) *  (23)

In order to make the team probability of detection greater than 1- 8:

P= - (1 - e(r7$)r > I-8 = N* > log(6) (24)
10o(l - &(7T
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STEP 4: Similarly, the team probability of false alarm is:

P t = 1-01PFr7*)) (25)

Then from (25) and (21):

In order to make the team probability of false alarm smaller than 8:

P < 1-.(7*) < 8 log(1-8) > N* (27)

STEP 5: To show that an N* satisfying both (24) and (27) indeed exists, recall that for x 0:

log(l+x) - x (28)

If t7* is selected sufficiently large, Co(71*) is very close to zero (Figure 7); then from (24), (27) and

(28), the integer N* has to satisfy:

log(l.- 0 log(l-8) N* 2 log() log(

lo -! o&(17* &D7* 109 -og77wo3

- 77*l0(r*)J 2 N* 2t * (29)

Thus by choosing 7r* sufficiently large, which can be done because of the assumption mo= **, an

integer N* satisfying both (24) and (27) can always be obtained.

STEP 6: If the decision rules of Step 2 are employed by the team, for any given prior probalities

and consequently any threshold 77 = P(Ho)/P(HI) (which is not to be confused with our personal

choise of large number 17*), the team probability of error is:

S= 17 PF+'+ - b) < + 6 (30)
Tsfa =7e+ 8 77+ 77i+ t o7+

Thus for any given 8 > 0, the infinite team probability of error can be made less than . Q.E.D.



26

Proof of Proposition 3.
Denote by P1 ' the probability of false alarm and by PD the probability of detection of the

decision of the nth DM of the team. Then (10) can be written in the following form:

1 ,,-0

A(y) - D

u,= 0 p I ; U,-l= 1

for n -2, 3, 4,

1
PD(llr1*) -------------

slope: 1l1T*

slope: 11*

PD

cO(r1*)

S I I

Prl*) I -atOM 1

Figure 8. A ROC Curve with Infinite Initial Slope and Zero Final Slope (o , ml 0)

STEP 1: Pick some large number 17*.- Then consider the point (PF< 17*), Po(i7*)) of the ROC curve
of the individual DM which has slope 7"/* and denote by e0(i7*) > 0 the probability of detection at
that point (Figure 8). Then from the concavity of the ROC curve:

0* P < (r1 *) 1= PFr7*) < ..(rl*)

Note that such a point can always be obtained regardless of how large 77* is because of the

assumption that the initial slope of the ROC curve is: mc = -c.
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STEP 2: Similarly, for the same large number 17*, consider the point (PF(1/r/*), PD(I/7r*) of the

ROC curve of the individual DM which has slope I/77* and denote by I -1 (77*) the probability of

false alarm at that point (Figure 8). Then from the concavity of the ROC curve:

-1-I[(l -EI(fl*))- 11+1 < PD(I/l*) = PD(I/r7*) > I -C(?I*) (33)

Note that such a point can always be obtained regardless of how large 17* is because of the

assumption that the initial slope of the ROC curve: mi 0.

slope: I1TI*

Slope: T)*

PD

c~(rj*) .*)

* S*

I* 

I

Fgr .The ROCac Curvyes of the tabyaWorse DM ofSep 3O and of pnth e in DMue n

undErlin prbAbility witrbutos ore reealte (inc te namSes 2-of theropotsi esn can now

inerpeaned) tha the eiionin tehol 77sisfinohes:wydfndD stoso htP(1 b eo tIhnu e w

The rpaeeeyD oftetabyawreD whsRCcreipesndinFge9ad

0,btfore 9.e o urvteess thae Worsued her of Sellndo. heOi lD
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H0 
1

H1  - Co(T1*) co(r1*)

Table 3. Probability Distributions for DM of Figure 9

STEP $: For some integer N*, define the following decision rules for the DMs of the team:

For DM 1:

U1 Y I= (35a)

ForDMn; n=2,3, ... , N*:

un = M(yn, Un 1) = y,,=Oandu,- 1=O (35b)
otherwise

For DM n; n = N*+I, N*+2, N*+3,

U,. = n,.,uii = u.- (35c)

These may be equivalently written in terms of likelihood ratios as follows:

For DM 1:

= = (0 (36a); A(yj) >17

For DM n; n = 2, 3, ...,N*:

= 0; A(yn) < 7* and u.- = 0 (36b)
I, otherwise

For DM n; n = N*+I, N*+2, N*+3,

U. = YM(y., u._) u._0, (36c)
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STEP 5: It is easy to see that if the decision rules of the previous step are implemented the

probability of detection of the team is:

PD = I- (1- ('))' (37)

In order to make the team probability of detection greater than 1 - 8:

PD= 1 (1 (?1*) > I-5 N > log() (38)

1N 1-

STEP 6: Similarly, the team probability of false alarm is:

P = 1-(I- Px'7")} (39)

Then from (39) and (32):

< I I ) (40)

In order to make the team probability of false alarm smaller than 6:

PF' < 1 I- Eb(1 *) <8 log(l 6) > N* (41)

STEP 7: To show that an N* satisfying both (38) and (41) indeed exists, recall that if v1" is
selected sufficiently large, o(?7*) is very close to zero (Figure 8); then from (28), (38) and (40),

the integer N* has to satisfy:

log(l - 6) !21o(1- ) F og() 1 F log(b) 1

1 eQ7*)) COO I- b7*)/ 1  0og - &D(1*))

* 'og(-4) o 2! 4)2
L eO (q*)J Q*)(2

Thus by choosing 17* sufficiently large, which can be done because of the assumption mo = ., an

integer N* satisfying both (38) and (41) can always be obtained.
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STEP 8: If the decision rules of Step 4 are employed by the team, for any given decision threshold
r1 which satisfies (34) (and which is not to be confused with our personal choise of large number
t7*), the team probability of error is:

Pe(*O) = 77 Pt+ GL -PD < 7 5 + ___5=5 (43)
77+ 1 7+1 77+1 17+1

Thus for any given 8 > 0, the probability of error of the infinite team which consists of the worse

DMs (of Figure 9) can be made less than 8; therefore, the probability of eror of the infinite team

which consists of the original (better) DMs can be made less than 8.

STEP 9: What remains to be verified is that the decision rules of Step 4 for the worse DMs (of

Figure 9) are indeed the suboptimal decision rules of (9) and (10) for those DMs.

It is not hard to verify that, for DM 1, the suboptimal decision rule of (9) and the proposed
decision rule of (35a) are identical. Recall that t7 was assumed to satisfy (34) and that 77* can be

selected sufficiently large. Then:

> 7 > > (44)R - -e -A-L

77* 77*

Then it should be clear from Figure 7 that the decision thresholds for both decision rules coincide.

To show this for the other DMs, recall that under the decision rules of Step 4:

I- x- 0- C7)r ;n=1,2, .... N*
(P, PBn) = ' (45)

P(1-1 - ), 1-(1-eo(t*)trj*; n N*+I,N*+2, N*+3,... 4

Substituting into the thresholds of (31):

1 -(A '"*)r -N1

S ( 7- rr) 1  n -2,3,.... N
hNEoNr-, (46)

(1-7(7)) ¢ n =N*+I, N*+2,]N*+3, ...
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1 E4(* - 1
77 V ; nff2, 3,..., N*

I (I (47)

70) ; n=N*+I,N*+2,N*+3,...

To show the above thresholds are indeed the thresholds of the suboptimal dmiuim rules, we

need to show that:

< rq* ; nf=f2,3, ..., N* (48)
> 17* ; n=N*+I,N*+2...

and:
&l(77*) ; n=2,3,4,... (49)

For this, we now need to show that there exists some integer N* satisfying (48). Since we want

the team probability of error to go to zero assymptotically, we also need to verify that N* satisfies
(42). Recall that 77* is large; then:

?I *( ) > . n=2,3,...,N (50)

Therefore, it suffices to show that:

17 (i-7* ?1* > (i- F 1  -= (51)
(1 )- ~ ( 7(*)r --

Taking logarithms:

N~)l~ ilo 7~)~lg( -~o7*) (52)-lg( e~7)] o

Using (28) to approximate:

+17 0(17*)] log( ) > (N* - 1I (. + ( 0(W)l (53)
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This can be rewritten as:

io4 -+ 1 > N* > (54)

Therefore, an integer N* satisfying (48) indeed exists. Moreover, for 1r7 sufficiently large:

77"1°g(1-+ > 2 -1 > N* > 04__7_ > 1o) (55)

Thus, this integer N* also satisfies (42).
Finally to show that (49) holds, observe that for 1* sufficiently large (which implies that

eo(i7*) is very small), apply Taylor's theorem to obtain that, for all n = 2, 3, 4.

.. (n )(i7) 77* 1 .o(77*)

Thus, the decision rules of Step 4 correspond indeed the suboptimal decision rules, for the integer

N* defined by (54). Q.E.D.


